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A discussion on an apparent MO theory paradox, concerning the probability of position-
ing a particle within a nodal plane, is carried out in terms of particle confinement probability
within finite thickness slabs encompassing the plane in question. It is also discussed how
using extended wave functions, the joint position plus kinetic resultant probability distribu-
tion, just fulfilling the uncertainty principle, produces a compensating effect on the particle
probability of sharing position or momentum within the two half-spaces delimited by the
considered nodal plane.

1. Introduction

It is unquestionable that classical MO theory, described many years ago [15], is
now a basic form of chemical knowledge, which impregnates the chemical reasoning in
such a manner that it will be difficult to ignore today its important role. However, even
now some interesting questions arise when MO one-electron functions are analyzed as
a source of density functions.

A typical example can be posed in the following way. It is well known that
some MO position functions, associated to the quantum chemical structure of planar
molecules, the so-called π-type MO, for instance, possess a symmetry plane, which
acts as a nodal plane (for a thorough study of the problem and discussion, see, e.g., [9];
for a sequel see [11]). In this molecular nodal plane, P say, the MO yields a zero
value everywhere, that is

∀rp ∈ P −→ ψ(rp) = 0.

This is the equivalent to writing for the attached density function the associated
expression

∀rp ∈ P −→ ρ(rp) =
∣∣ψ(rp)

∣∣2 = 0.

And this result, apparently, will amount to the same as to let say an electron
described by the MO function: ψ(r) has to be confined in either the upper, PU, or
lower, PL, of the half-spaces defined by the nodal plane, P, because the particle,
according to the usual interpretation of quantum mechanics, could never be allowed
to traverse an infinite spread slab of zero probability. Such a conclusion presents a

 J.C. Baltzer AG, Science Publishers
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contradiction with the fact that the particle has unit probability to be present in the full
space.

Statistical arguments, concerning the nature of probability density functions, can
be used to better understand the situation [16] and overcome this pretended paradox.
Because a probability density function, ρ(r), really represents probability per unit
volume, then an isolated point-like density result should be of no value, providing
zero probability; that is, formally

Prob(e ∈ r) = 0, (1)

where e ∈ r is used to symbolize that the electron is positioned at the point r, while the
correct expression to express the probability of finding the particle positioned within
an infinitesimal volume element can be easily written as

Prob
(
e ∈ [r, r + dr]

)
= ρ(r) dr.

Also, it is well known that the following definition holds for a finite volume domain
included within the three-dimensional space:

Prob(e ∈ V ) =

∫
V
ρ(r) dr, (2)

which becomes unity if V coincides with the whole space.
At a first glance it seems that the particle confinement paradox, performed by

the nodal plane, can be a problem of using a probability attachment to the said nodal
plane, but without any statistical sense. The following section will try to analyze the
situation and find out some plausible extended explanation.

2. The problem analysis for GTO functions

Perhaps, within a statistically correct starting point, the best way to study this ap-
parent nodal plane paradox could be directed to set a question like: “Has it some sense
in MO theory to seek for the probability of observing an electron into a sufficiently
thick, or thin, surface?”, trying to find a reasonable answer, as well as to discuss the
connected result.

At least, in the usual GTO basis set practice [17], the answer can be affirmative
under some restrictions. To start, use an origin-centered general Gaussian function
directed into the z-axis, for example,

ψ(r) = Np(α)zp exp
(
−α|r|2

)
. (3)

In this expression, α is the scale factor, Np(α) is the normalization constant and p > 0
is an integer parameter, which generates a family of GTO functions. The null value
of the parameter p corresponds to a spherical nodeless 1s-type GTO. The next value,
p = 1, corresponds to a 2pz function with z = 0 as the nodal XY plane. Higher
parameter values represent higher angular quantum number orbitals, having the same
nodal plane characteristic.
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The attached probability density function to the GTO, defined in equation (3), is
readily constructed as the squared module:

ρ(r) =
∣∣ψ(r)

∣∣2 = N2
p (α)z2p exp

(
−2α|r|2

)
. (4)

The probability of an electron lying inside an infinitesimal slab of 2εz width,
including the XY plane, forming the volume εXY , say, will be readily obtained for
the distribution (4):

Prob(e ∈ εXY ) = N2
p

[
g0(2α)

]2Φp(2α; εz),

where the function g0(2α) is related to the Gaussian integral [5]

gp(α) =

∫ +∞

−∞
u2p exp

(
−αu2) du =

(2p− 1)!!
(2α)p

√
π

α
, (5)

which in turn is a well-known result [17], and Φp(2α; εz) is in general an integral
related to the incomplete gamma function and also to the usual error function [1]
when p = 0. It is defined for convenience here as

Φp(a; ξ) =

∫ +ξ

−ξ
z2pe−az

2
dz. (6)

On the other hand, the squared normalization factor can be written in terms of the
above-defined Gaussian integral (5), too:

N2
p =

(
g0(2α)

)−2(
gp(2α)

)−1
.

Thus, obviously,

Prob(e ∈ εXY ) =
(
gp(2α)

)−1Φp(2α; εz), (7)

so it can be easily seen how the probability becomes zero as the slab thickness decreases
to zero, and tends to 1 at the infinity, when integrals (5) and (6) become equal. The
first situation is equivalent to the remark implicit in equation (1), and the second
corresponds to the normalization of the function and to the remark of equation (2).
This is a normal result coming from the fact of the space dimension reduction, when
considering from a single plane up to the whole space. This result will apply almost in
the same way when considering any point, axis or plane and the same general function.

In order to have a possible comparison between all cases implicit in the general
GTO function, the integral (6) will be developed in a power series, so equation (7)
becomes

Prob(e ∈ εXY ) = 2
(
gp(2α)

)−1
ε2p+1
z

∞∑
k=0

A(p)
k ε

2k
z , (8)

where the power series coefficients are defined as

A(p)
k =

(−2α)k

k!(2(p+ k) + 1)
.



38 R. Carbó-Dorca / A discussion on an apparent MO theory paradox

For sufficiently small values of the slab thickness, truncating the series (8) at the first
two or three terms will be sufficient to possess a clear probability variation trend, and
thus it will be obtained, for example, that

Prob(e ∈ εXY ) ≈ 2
(
gp(2α)

)−1
[
ε2p+1
z

(
1

2p+ 1
− 2αε2

z

2p+ 3

)
+ O

(
ε2p+5
z

)]
.

So, from a mathematical point of view, the question of the probability in a plane z = 0,
that is when εz = 0, is trivially answered: it is null, this result being without special
statistical relevance. But it will be not so, when a physically thin slab is considered.
In fact, in these cases, it will be sufficient to consider an approximation like

Prob(e ∈ εXY ) ≈ 2
(
(2p+ 1)gp(2α)

)−1
ε2p+1
z .

This expression will permit us to obtain the needed thickness in order to obtain a fixed
probability P :

ε2p+1
z ≈

(
p+

1
2

)
gp(2α)P.

Inspection of the probability expressed as a power series can provide the following
information: in the 1s-type orbital case, p = 0, the probability is directly proportional
to the first power of the slab thickness. In other cases, like in p-type GTO or even in
higher angular quantum number functions, the density is everywhere vanishing within
the nodal plane, usually perpendicular to the function principal symmetry axis. It
seems that an extra factor, separating the space in two halves through an almost null
probability position plane, is present there. Even one can say that, for the same slab
thickness, the overall probability grows smaller as higher angular quantum number
functions than in 1s GTO are considered.

The probability will decrease swiftly in the neighborhood of the nodal plane in
a factor, compared with the 1s GTO case, proportional to ε2p

z . So it seems that in
higher order angular quantum number functions, possessing nodal planes, the particle
position probability decreases in a steepest fashion as the nodal surface approaches,
when compared with other functions, which as 1s-type ones, do not possess such
characteristic.

3. Relativistic spinors and classical extended functions

However, in another related field, relativistic quantum mechanics, it is well known
that Dirac spinors [2], the relativistic four-component one-electron wave functions, pos-
sess a close relationship between large and small components through the momentum
operator [13]. For a modern and general discussion of this relationship and the appli-
cation problems of Dirac equation, see [12]. The result, taken as a whole, appears to
provide density functions with probability density in the classical nodal planes, slightly
different from classical behavior, when considering the relativistic high angular quan-
tum number functions [14].
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Thus, perhaps, the appropriate question to be formulated around this problem
is: can within the classical quantum mechanical treatment exist a similar solution to
the relativistic case? The answer may be affirmative [12]. Also, an alternative way
to study the problem within classical quantum mechanics may consist in taking into
account the possibility to construct extended wavefunctions [7] in the form of a vector
bearing simultaneously the normalized wavefunction as well as its gradient:

φ(r) =

(
ψ(r)
∂ψ(r)
∂r

)
=

(
ψ

∇ψ

)
,

such as the corresponding extended density function could be written using an inward
matrix product (see, e.g., [3,8]), followed by a complete matrix elements sum (see,
e.g., [5,6]):

|φ|2 = 〈φ∗ ∗ φ〉 =

〈(
ψ∗ψ

(∇ψ)∗(∇ψ)

)〉
=

〈( |ψ|2
|∇ψ|2

)〉
= |ψ|2 + |∇ψ|2 = ρ+ κ.

This new extended density function is square summable as∫
|φ|2 dr =

∫
(ρ+ κ) dr = 1 + 2K,

where K is the kinetic energy expectation value associated to the function ψ(r): K =
1
2〈∇ψ | ∇ψ〉. As a consequence, the extended function can be normalized, and the
normalized density function

τ = (1 + 2K)−1(ρ+ κ)

can be seen as a total density function of the system1. Such a density function can
be interpreted as representing the joint probability of finding the particle within some
space volume, V , or possessing a certain kinetic energy, KV , within the same volume.
In case of need, the velocity or momentum modules can substitute kinetic energy. The
presence of the grammatical particle or, translated to the boolean or logical symbol ∨,
is essential to keep the uncertainty principle valid. So,

Prob(e ∈ V ∨ e ∈ KV ) =

∫
V
τ (r) dr.

The joint probability has the chance of having always a summed term, which in a
nodal plane bears the characteristic behavior of a function with lesser angular quantum
number, in a similar way as in the case when the relativistic spinors are considered.

To visualize this new situation, the already studied general GTO in equation (3)
can be chosen again in the extended wave function context. The position density part

1 This result and what follows shall be taken in the statistical sense. The physical implications of such
a density function are still to be elucidated.
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is already discussed, but not the kinetic energy density, which for such a function will
need to be based on the gradient elements:

∇ψ(r) = Np(α)

 −2αxzp

−2αyzp

pzp−1 − 2αzp+1

 exp
(
−α|r|2

)
.

The associated kinetic energy density distribution can be written as

κp(r) = N2
p (α)

[
4α2(x2 + y2)z2p +

(
pzp−1 − 2αzp+1)2]

exp
(
−2α|r|2

)
.

In the kinetic energy density function above, dealing with a pz function, i.e. when
p = 1, a term appears, which bears a 1s GTO structure as the one discussed before.
The z4 term could be discarded for the present purpose, as it will provide a still
lesser contribution to the probability than the z2 elements. Thus the kinetic probability
compensates the diminution in position probability experienced by a nodal plane MO:

κ0(r) = N2
0 (α)

[
4α2(x2 + y2)− 2αz2] exp

(
−2α|r|2

)
.

In fact, dropping all the irrelevant terms, for p > 0, it can be written when a
probability within a slab with small thickness is sought:

κp(r) ≈
[
pNp(α)zp−1 exp

(
−α|r|2

)]2
,

or roughly speaking, the result looks as the density of a general GTO function with a
power in the variable z one unit less than the generating one.

So, even if in the nodal plane neighborhood, the probability of locating the
electron position is small, the probability of finding it with a well-defined momentum
may correct the picture in a general manner, at least in a similar way as occurs in
lesser angular quantum number orbitals. Thus, even if the probability of the particle
being somewhere in the nodal plane neighborhood is small, the probability that in the
same region the particle bear a well-defined kinetic energy may compensate the lack
of previous information, according to the uncertainty principle.

Moreover, other kinds of extended density functions can be constructed [7], but
their use will probably not really add new information to the main results discussed
so far. The same can be said with respect to analyzing GTO in spherical coordinates,
or other orbital forms, like STO (see, e.g., [18]) or Cartesian STO [4].
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